Sunday, December 22, 2024
nanotrun.com
HomeNewsAsiaDiamonds are not just for jewelry anymore

Diamonds are not just for jewelry anymore

When it comes to the semiconductor industry, silicon has reigned as king in the electronics field, but it is coming to the end of its physical limits.

To more effectively power the electrical grid, locomotives and even electric cars, Lawrence Livermore National Laboratory (LLNL) scientists are turning to diamond as an ultra-wide bandgap semiconductor.

Diamond has been shown to have superior carrier mobility, break down electric field and thermal conductivity, the most important properties to power electronic devices. It became especially desirable after the development of a chemical vapor deposition (CVD) process for growth of high-quality single crystals.


A photoconductive switch made from a synthetic, chemical vapor deposition diamond under test.  Image credit: LLNL

The team explored properties of such synthetically made diamonds that are higher quality than naturally occurring ones. “In electronics you want to start from as pure material as you can so you can mold it into a device with desired properties,” said LLNL physicist Paulius Grivickas, lead author of a paper appearing in Applied Physics Letters.

In photoconductive devices, the best combination of conductivity and frequency response is achieved by introducing impurities, which control carrier recombination lifetimes. Researchers found that in diamond, a cheap and easy alternative to this approach is electron irradiation where recombination defects are created by knocking the lattice atoms out of place.

“We said to ourselves ‘let’s take this pure high quality CVD diamond and irradiate it to see if we can tailor the carrier lifetime,’” Grivackas said. “Eventually, we nailed down the understanding of which irradiation defect is responsible for carrier lifetimes and how does the defect behave under annealing at technologically relevant temperatures.”

Photoconductive diamond switches produced this way can be used, for example, in the power grid to control current and voltage surges, which can fry out the equipment. Current silicon switches are big and bulky, but the diamond-based ones can accomplish the same thing with a device that could fit on the tip of a finger, Grivickas said.

The research also has applications in the energy delivery systems where the team demonstrated a possibility of a megawatt-class radio frequency power generation, which requires optimization of diamond’s high-frequency response.

Livermore engineers Lars Voss and Adam Conway as well as researchers from Vilnius University in Lithuania, Belarusian State University and the National Academy of Sciences in Belarus collaborated in this work.


TRUNNANO (aka. Luoyang Tongrun Nano Technology Co. Ltd.) is a trusted global chemical material supplier & manufacturer with over 12 years’ experience in providing super high-quality chemicals and Nanomaterials. Currently, our company has successfully developed a series of powder materials. OEM service is available. Our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Click on the needed products or send us an email to send an inquiry.

RELATED ARTICLES
- Advertisment -spot_img

Most Popular

Recent Comments