Wednesday, November 27, 2024
nanotrun.com
HomeNewsAsiaThe Future of High-performance Lithium Batteries Is Approaching

The Future of High-performance Lithium Batteries Is Approaching

The Discovery of High-performance Lithium Batteries

American scientists have created a lithium-ion battery using a phosphorus-based anode. This kind of battery shows a larger capacity than the current lithium-ion technology, and can be used as a guideline for the design of high-performance anodes for future lithium-ion batteries.
Because lithium-ion batteries have the potential to transform electric vehicles, renewable energy, and a range of other industries, it is a big business for researchers and commercial developers to extract more electricity from lithium-ion batteries. Scientists around the world are testing thousands of different materials and methods. However, most people will agree on the importance of replacing the graphite anodes used in today's batteries with a material with a higher energy density. There are many ways to achieve this, and significant advances have been made in lithium metal and silicon-based anodes.
 
Several new concepts in lithium-ion energy storage technology have the potential to greatly increase the energy capacity of batteries. These include lithium metal anodes, which have the potential to increase energy density by more than 50%. Phosphorus is another material that may have a higher energy capacity than graphite, and it is also the focus of a new study led by scientists at the Argonne National Laboratory. The fact that phosphorus "swells" to a larger volume during charging has hindered its development, but its other characteristics make it an attractive option for further research.
 

Advantages of High-performance Lithium Batteries

Xu Guiliang, a chemist in the Argonne laboratory, said: “Phosphorus has a very high energy capacity. When we explored this material, we found that our anode material has a very high initial coulombic efficiency, which can exceed 90%.” The team used The steel ball grinding process creates a composite anode of black phosphorus and conductive carbon, which they say can be used for mass production. The initial Coulombic efficiency (ICE) of the anode is 91%, and the specific capacity is about 2500 mAh.
The anode and the nickel-cobalt-manganese cathode are integrated in a full battery, which Argonne says provides a proof of concept for its practicality. Considering that black phosphorus is too expensive for commercial use, the team also used cheaper (but less conductive) red phosphorus to make anodes. The performance data of the anode is not provided, but Argonne believes that the anode shows "similar stability and high ice, with very high actual capacity."
 
The researchers described the device in "Practical Phosphorus-based Anode Materials for High Energy Lithium Ion Batteries" recently published on "Nano Energy". The organization stated that their next goal is to study the process of mass production of red phosphorous anodes. They said: "We are trying to start cooperation with industry partners so that we can expand the scale of this material so that it can be commercialized in the future."
RELATED ARTICLES
- Advertisment -spot_img

Most Popular

Recent Comments