Boron is similar to carbon's capability to form stable covalently bonded molecular networks. Even nominally disordered (amorphous) boron contains regular boron icosahedra, which are connected randomly without long-range order. Crystalline boron is a rigid, black material with a melting point above 2000 °C. It forms four major allotropes: α-rhombohedral and β-rhombohedral (α-R and β-R), γ-orthorhombic (γ) and β-tetragonal (β-T). All four phases are stable at ambient conditions, and β-rhombohedral is the most common and regular. An α-tetragonal phase also exists (α-T) but is very difficult to produce without significant contamination. Most phases are based on B12 icosahedra, but the γ phase can be described as a rocksalt-type arrangement of the icosahedra and B2 atomic pairs. It can be produced by compressing other boron phases to 12–20 GPa and heating to 1500–1800 °C; it remains stable after releasing the temperature and pressure. The β-T phase is produced at similar pressures but at higher temperatures of 1800–2200 °C. The α-T and β-T phases might coexist at ambient conditions, with the β-T phase being the more stable. Compressing boron above 160 GPa produces a boron phase with an unknown structure. This phase is a superconductor at temperatures below 6–12 K. Borospherene (fullerene-like B40 molecules) and borophene (proposed graphene-like structure) were described in 2014. If you are looking for high quality, high purity, and cost-effective boron, or if you require the latest price, please email contact mis-asia.