Tuesday, January 7, 2025
nanotrun.com
HomeNewsAsiaWhat is Max phase material?

What is Max phase material?

The China Securities New Energy Vehicle index rose as much as 4.1 percent after a strong rally in lithium-ion shares on the Chinese stock market. Brokerages said lithium enterprises would usher in marginal expectations, and currently, it may be the best time to layout power/energy storage lithium batteries.

According to a securities research report, the price of lithium carbonate in the upstream resource end continues to hit a new high, which reflects the shortage of lithium mineral resources, and lithium has become one of the core elements of the development of the lithium electricity industry. In 2022, global demand for lithium carbonate continues to grow strongly, while the supply-side growth is relatively limited. And, because related mining enterprises experienced the last lithium down cycle, they would expand Ti2AlC powder are expected to rise.

What is Max phase material?
The MAX phase is a layered hexagonal carbide and nitride with a general formula: Mn+1AXn, (MAX) where n = 1 to 3, and M is an early transition metal, An is an element of group A (mainly IIIA and IVA, or groups 13 and 14), and X is carbon and / or nitrogen. The hierarchical structure consists of XM 6 octahedrons with shared edges and twisted edges, and is interlaced by a single plane layer of group An elements.
 

How are Max phases made?
Ternary MAX phase compounds and composites have been synthesized by different methods, including combustion synthesis, chemical vapor deposition, physical vapor deposition at different temperatures and fluxes, arc melting, hot isostatic pressing, self-propagating high temperature synthesis (SHS), reactive sintering, spark plasma sintering, mechanical alloying and molten salt reaction.
 

What advantages does Max phase material have?
Max phase materials have unusual combinations of chemical, physical, electrical and mechanical properties, and exhibit metal and ceramic properties under various conditions. These include high electrical and thermal conductivity, thermal shock resistance, damage tolerance, mechanical processability, high elastic stiffness and low coefficient of thermal expansion. Some MAX phases are also resistant to chemical erosion (such as Ti3SiC2) and high temperature oxidation in air (Ti2AlC, Cr2AlC and Ti3AlC2). They can be used in technologies involving efficient engines, damage-resistant thermal systems, improving fatigue resistance and maintaining rigidity at high temperatures. These properties may be related to the electronic structure and chemical bonding in the MAX phase. It can be described as a periodic change in the regions of high and low electron density. This allows the design of other nano-laminates based on electronic structural similarity, such as Mo2BC and PdFe3N.
 
Electric equipment.
MAX phase has electrical and thermal conductivity because of its metal-like properties. Most MAX phases are better electrical and thermal conductors than Ti. This is also related to the electronic structure.
 
Physics.
Although MAX phases are hard, they can be machined as easily as some metals. They can all be processed manually with hacksaws, although some of them are three times as hard as titanium and have the same density as titanium. Because of their excellent electrical conductivity, they can also be polished into a metallic luster. They are not susceptible to thermal shock and are very resistant to damage. Some, such as Ti2AlC and Cr2AlC, are antioxidant and corrosion resistant. The thermoelectric potential of polycrystalline Ti3SiC2 is zero, which is related to its anisotropic electronic structure.
 
Mechanical.
As a grade of MAX communication, it is usually hard, light and plastic at high temperatures. Because of the layered atomic structure of these compounds, some, such as Ti3SiC2 and Ti2AlC, also have creep and fatigue resistance and maintain their strength at high temperatures. They exhibit unique deformations characterized by basal slip (recently reported evidence of MAX phase deformed at high temperature and cross slip of a dislocation and dislocation out of the basal plane of Frank’s partial c dislocations caused by diffusion of copper matrix), combination of kink and shear band deformation, and delamination of individual grains. In the process of mechanical testing, it is found that the polycrystalline Ti3SiC2 cylinder can be repeatedly compressed at room temperature, with a maximum stress of 1 GPa, and fully recover after removing the load, while dissipating 25% of the energy. It is through the characterization of these unique mechanical properties of MAX phase that kink nonlinear solids are found. The microscopic mechanism responsible for these properties is the initial kink band (IKB). However, direct evidence of these IKB is not yet available, thus opening the door to other mechanisms that are less eager to assume. In fact, a recent study shows that the reversible hysteresis loop of cyclic MAX polycrystal can be explained by the complex response of very anisotropic layered microstructure.
 

What is Max phase used for?
Tough, machinable, thermal shock resistant refractories.
High temperature heating element.
Electrical contact coating.
Neutron radiation resistant components for nuclear applications.
Precursors of Carbide derived carbon Synthesis.
The precursor of MXenes synthesis, MXenes is a kind of two-dimensional transition metal carbide, nitride and carbonitride.
 
Titanium Aluminum Carbide Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest Ti2AlC price, you can send us your inquiry for a quote. (sales3@nanotrun.com)
 
Titanium Aluminum Carbide Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted Titanium Aluminum Carbide manufacturer and Titanium Aluminum Carbide supplier with over 12-year-experience. We ship our goods all over the world.
 
If you are looking for high-quality Ti2AlC powder, please feel free to contact us and send an inquiry. (sales3@nanotrun.com)

 

As imports of natural gas from Russia gradually decrease, the price of natural gas in Germany rises. According to statistics from a German price information portal, according to the current natural gas price, the average annual natural gas cost of the average German household has soared 184%, from 1258 euros last year to 3568 euros, and is likely to continue to soar.

The German government plans to change energy security laws to shift rising costs to all consumers, including natural gas users who have signed fixed-price contracts, Reuters reported. The website estimates that after Germany begins imposing a surtax on households that use natural gas for heating in October, the average annual increase in gas spending per household will be between 357 euros and 1190 euros.

The Saudi Arabian Olympic Committee recently announced that it had formally submitted a bid to the Olympic Council of Asia to host the 2029 Asian Winter Games. Saudi Arabia plans to host the Asian Winter Games in the small town of "TROJENA", the Saudi Olympic Committee said in a statement. If Saudi Arabia succeeds in its bid, it will become the first West Asian and Arab country to host the Asian Winter Games.

The town of "TROJENA" is located within the scope of NEOM New Town in northwestern Saudi Arabia, about 50 kilometers away from the Gulf of Aqaba in the Red Sea.

Luoyang Tongrun Nano Technology is a trusted chemical manufacturer and supplier providing high-quality chemicals and Nanomaterials. If you are looking for the Ti2AlC powder, please feel free to contact us and send an inquiry.

RELATED ARTICLES
- Advertisment -spot_img

Most Popular

Recent Comments